skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liao, Wenhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gyroid structure, a nature inspired cellular architecture, is under extensive exploration recently due to its structure continuity, uniform stress distribution under compression, and stable collapse mechanism during deformation. However, when combining with a functional gradient, the Gyroid structure can perform much different mechanical behavior from its homogeneous counterpart. Herein, bottom-up computational modeling is performed to investigate the mechanics of functional gradient nano-gyroid structure made of copper (Cu). Our work reveals that its mechanical properties degrade with a density that is much slower than those of homogeneous gyroid structure. The scaling of yield strength [Formula: see text] to the relative density [Formula: see text] for the functional gradient gyroid structure is in the factor of 1.5. Moreover, the layer-by-layer collapsing mechanism yields significantly better mechanical energy absorption ability. This study not only leads to insightful understanding of the deformation mechanisms in nonuniform gyroid structures but also promotes the development of the functional gradient cellular materials. 
    more » « less